Machine Learning in Medicine Part Three /

Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cleophas, Ton J. (Συγγραφέας), Zwinderman, Aeilko H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03530nam a22004695i 4500
001 978-94-007-7869-6
003 DE-He213
005 20151204174600.0
007 cr nn 008mamaa
008 131125s2013 ne | s |||| 0|eng d
020 |a 9789400778696  |9 978-94-007-7869-6 
024 7 |a 10.1007/978-94-007-7869-6  |2 doi 
040 |d GrThAP 
050 4 |a R-RZ 
072 7 |a MBGR  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
082 0 4 |a 610  |2 23 
100 1 |a Cleophas, Ton J.  |e author. 
245 1 0 |a Machine Learning in Medicine  |h [electronic resource] :  |b Part Three /  |c by Ton J. Cleophas, Aeilko H. Zwinderman. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 |a XIX, 224 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction to Machine Learning Part Three.- Evolutionary Operations.- Multiple Treatments -- Multiple Endpoints -- Optimal Binning -- Exact P-Values -- Probit Regression -- Over - dispersion.10 Random Effects -- Weighted Least Squares -- Multiple Response Sets -- Complex Samples -- Runs Tests.- Decision Trees -- Spectral Plots -- Newton's Methods -- Stochastic Processes, Stationary Markov Chains -- Stochastic Processes, Absorbing Markov Chains -- Conjoint Models -- Machine Learning and Unsolved Questions -- Index. 
520 |a Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York. 
650 0 |a Medicine. 
650 0 |a Computer graphics. 
650 0 |a Statistics. 
650 1 4 |a Biomedicine. 
650 2 4 |a Biomedicine general. 
650 2 4 |a Medicine/Public Health, general. 
650 2 4 |a Statistics, general. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Zwinderman, Aeilko H.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400778689 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-7869-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)