Geometry from Dynamics, Classical and Quantum

This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cariñena, José F. (Συγγραφέας), Ibort, Alberto (Συγγραφέας), Marmo, Giuseppe (Συγγραφέας), Morandi, Giuseppe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04479nam a22005415i 4500
001 978-94-017-9220-2
003 DE-He213
005 20151204181708.0
007 cr nn 008mamaa
008 140923s2015 ne | s |||| 0|eng d
020 |a 9789401792202  |9 978-94-017-9220-2 
024 7 |a 10.1007/978-94-017-9220-2  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Cariñena, José F.  |e author. 
245 1 0 |a Geometry from Dynamics, Classical and Quantum  |h [electronic resource] /  |c by José F. Cariñena, Alberto Ibort, Giuseppe Marmo, Giuseppe Morandi. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2015. 
300 |a XXV, 719 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Contents -- Foreword -- Some examples of linear and nonlinear physical systems and their dynamical equations -- The language of geometry and dynamical systems: the linearity paradigm -- The geometrization of dynamical systems -- Invariant structures for dynamical systems: Poisson and Jacobi dynamics -- The classical formulations of dynamics of Hamilton and Lagrange -- The geometry of Hermitean spaces: quantum evolution -- Folding and unfolding Classical and Quantum systems -- Integrable and superintegrable systems -- Lie-Scheffers systems -- Appendices -- Bibliography -- Index. 
520 |a This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system).   The book departs from the principle that ''dynamics is first'', and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics.  Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and superintegrability, are deeply related to the previous development and will be covered in the  last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that.  However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics. 
650 0 |a Physics. 
650 0 |a Differential geometry. 
650 0 |a Mathematical physics. 
650 0 |a Mechanics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mechanics. 
700 1 |a Ibort, Alberto.  |e author. 
700 1 |a Marmo, Giuseppe.  |e author. 
700 1 |a Morandi, Giuseppe.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789401792196 
856 4 0 |u http://dx.doi.org/10.1007/978-94-017-9220-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)