Geometry from Dynamics, Classical and Quantum
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is...
Κύριοι συγγραφείς: | Cariñena, José F. (Συγγραφέας), Ibort, Alberto (Συγγραφέας), Marmo, Giuseppe (Συγγραφέας), Morandi, Giuseppe (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2015.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
NonlinearWaves and Solitons on Contours and Closed Surfaces
ανά: Ludu, Andrei
Έκδοση: (2007) -
The Fermi-Pasta-Ulam Problem A Status Report /
Έκδοση: (2008) -
Topological Quantum Field Theory and Four Manifolds
ανά: Labastida, Jose, κ.ά.
Έκδοση: (2005) -
Hamiltonian Reduction by Stages
ανά: Marsden, Jerrold E., κ.ά.
Έκδοση: (2007) -
Darboux Transformations in Integrable Systems Theory and their Applications to Geometry /
ανά: Gu, Chaohao, κ.ά.
Έκδοση: (2005)