Computational and Statistical Epigenomics

This book introduces the reader to modern computational and statistical tools for translational epigenomics research. Over the last decade, epigenomics has emerged as a key area of molecular biology, epidemiology and genome medicine. Epigenomics not only offers us a deeper understanding of fundament...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Teschendorff, Andrew E. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2015.
Σειρά:Translational Bioinformatics, 7
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03081nam a22005055i 4500
001 978-94-017-9927-0
003 DE-He213
005 20151204141250.0
007 cr nn 008mamaa
008 150512s2015 ne | s |||| 0|eng d
020 |a 9789401799270  |9 978-94-017-9927-0 
024 7 |a 10.1007/978-94-017-9927-0  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
245 1 0 |a Computational and Statistical Epigenomics  |h [electronic resource] /  |c edited by Andrew E. Teschendorff. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2015. 
300 |a V, 217 p. 42 illus., 41 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Translational Bioinformatics,  |x 2213-2775 ;  |v 7 
520 |a This book introduces the reader to modern computational and statistical tools for translational epigenomics research. Over the last decade, epigenomics has emerged as a key area of molecular biology, epidemiology and genome medicine. Epigenomics not only offers us a deeper understanding of fundamental cellular biology, but also provides us with the basis for an improved understanding and management of complex diseases. From novel biomarkers for risk prediction, early detection, diagnosis and prognosis of common diseases, to novel therapeutic strategies, epigenomics is set to play a key role in the personalized medicine of the future. In this book we introduce the reader to some of the most important computational and statistical methods for analyzing epigenomic data, with a special focus on DNA methylation. Topics include normalization, correction for cellular heterogeneity, batch effects, clustering, supervised analysis and integrative methods for systems epigenomics. This book will be of interest to students and researchers in bioinformatics, biostatistics, biologists and clinicians alike. Dr. Andrew E. Teschendorff is Head of the Computational Systems Genomics Lab at the CAS-MPG Partner Institute for Computational Biology, Shanghai, China, as well as an Honorary Research Fellow at the UCL Cancer Institute, University College London, UK. 
650 0 |a Life sciences. 
650 0 |a Molecular biology. 
650 0 |a Epidemiology. 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 1 4 |a Life Sciences. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Computer Appl. in Life Sciences. 
650 2 4 |a Molecular Medicine. 
650 2 4 |a Epidemiology. 
700 1 |a Teschendorff, Andrew E.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789401799263 
830 0 |a Translational Bioinformatics,  |x 2213-2775 ;  |v 7 
856 4 0 |u http://dx.doi.org/10.1007/978-94-017-9927-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)