Differential Geometry and Mathematical Physics Part II. Fibre Bundles, Topology and Gauge Fields /

The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks: - Geometry and topology of fibre bundles, - Clifford algebras, spin structures and Dirac operators, - Gauge theory. Written in the style of a mathemati...

Full description

Bibliographic Details
Main Authors: Rudolph, Gerd (Author), Schmidt, Matthias (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2017.
Series:Theoretical and Mathematical Physics,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04123nam a22005655i 4500
001 978-94-024-0959-8
003 DE-He213
005 20170322071919.0
007 cr nn 008mamaa
008 170322s2017 ne | s |||| 0|eng d
020 |a 9789402409598  |9 978-94-024-0959-8 
024 7 |a 10.1007/978-94-024-0959-8  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Rudolph, Gerd.  |e author. 
245 1 0 |a Differential Geometry and Mathematical Physics  |h [electronic resource] :  |b Part II. Fibre Bundles, Topology and Gauge Fields /  |c by Gerd Rudolph, Matthias Schmidt. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2017. 
300 |a XVI, 830 p. 15 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 1864-5879 
505 0 |a Fibre bundles and connections -- Linear connections and Riemannian geometry -- Homotopy theory of principal fibre bundles. Classification -- Cohomology theory of fibre bundles. Characteristic classes -- Clifford algebras, spin structures and Dirac operators -- The Yang-Mills equation -- Matter fields and model building -- The gauge orbit space -- Elements of quantum gauge theory -- A Field restriction and field extension -- B The Conformal Group of the 4-sphere -- C Simple Lie algebras. Root diagrams -- D z -function regularization -- E K-theory and index bundles -- F Determinant line bundles -- G Eilenberg-MacLane spaces -- References. Index. 
520 |a The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks: - Geometry and topology of fibre bundles, - Clifford algebras, spin structures and Dirac operators, - Gauge theory. Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory. The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces. Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory. The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level. 
650 0 |a Physics. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
650 0 |a Algebraic topology. 
650 0 |a Mathematical physics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
700 1 |a Schmidt, Matthias.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789402409581 
830 0 |a Theoretical and Mathematical Physics,  |x 1864-5879 
856 4 0 |u http://dx.doi.org/10.1007/978-94-024-0959-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)