Normally Hyperbolic Invariant Manifolds The Noncompact Case /

This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eldering, Jaap (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press : Imprint: Atlantis Press, 2013.
Σειρά:Atlantis Series in Dynamical Systems ; 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02727nam a22004695i 4500
001 978-94-6239-003-4
003 DE-He213
005 20151218121032.0
007 cr nn 008mamaa
008 130817s2013 fr | s |||| 0|eng d
020 |a 9789462390034  |9 978-94-6239-003-4 
024 7 |a 10.2991/978-94-6239-003-4  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Eldering, Jaap.  |e author. 
245 1 0 |a Normally Hyperbolic Invariant Manifolds  |h [electronic resource] :  |b The Noncompact Case /  |c by Jaap Eldering. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2013. 
300 |a XII, 189 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Series in Dynamical Systems ;  |v 2 
505 0 |a Introduction -- Manifolds of bounded geometry -- Persistence of noncompact NHIMs -- Extension of results. 
520 |a This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462390027 
830 0 |a Atlantis Series in Dynamical Systems ;  |v 2 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-003-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)