Compressed Data Structures for Strings On Searching and Extracting Strings from Compressed Textual Data /

Data compression is mandatory to manage massive datasets, indexing is fundamental to query them. However, their goals appear as counterposed: the former aims at minimizing data redundancies, whereas the latter augments the dataset with auxiliary information to speed up the query resolution. In this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Venturini, Rossano (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press : Imprint: Atlantis Press, 2014.
Σειρά:Atlantis Studies in Computing, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02607nam a22004455i 4500
001 978-94-6239-033-1
003 DE-He213
005 20151030101829.0
007 cr nn 008mamaa
008 131031s2014 fr | s |||| 0|eng d
020 |a 9789462390331  |9 978-94-6239-033-1 
024 7 |a 10.2991/978-94-6239-033-1  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.C62 
072 7 |a UMB  |2 bicssc 
072 7 |a UYF  |2 bicssc 
072 7 |a COM036000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Venturini, Rossano.  |e author. 
245 1 0 |a Compressed Data Structures for Strings  |h [electronic resource] :  |b On Searching and Extracting Strings from Compressed Textual Data /  |c by Rossano Venturini. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2014. 
300 |a XIV, 118 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Computing,  |x 2212-8557 ;  |v 4 
505 0 |a Introduction -- Basic concepts -- Optimally partitioning a text to improve its compression -- Bit-complexity of Lempel-Ziv compression -- Fast random access on compressed data -- Experiments on compressed full-text indexing -- Dictionary indexes -- Future directions of research. 
520 |a Data compression is mandatory to manage massive datasets, indexing is fundamental to query them. However, their goals appear as counterposed: the former aims at minimizing data redundancies, whereas the latter augments the dataset with auxiliary information to speed up the query resolution. In this monograph we introduce solutions that overcome this dichotomy. We start by presenting the use of optimization techniques to improve the compression of classical data compression algorithms, then we move to the design of compressed data structures providing fast random access or efficient pattern matching queries on the compressed dataset. These theoretical studies are supported by experimental evidences of their impact in practical scenarios. 
650 0 |a Computer science. 
650 0 |a Arithmetic and logic units, Computer. 
650 1 4 |a Computer Science. 
650 2 4 |a Arithmetic and Logic Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462390324 
830 0 |a Atlantis Studies in Computing,  |x 2212-8557 ;  |v 4 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-033-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)