Lyapunov Exponents of Linear Cocycles Continuity via Large Deviations /

The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Duarte, Pedro (Συγγραφέας), Klein, Silvius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press : Imprint: Atlantis Press, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Atlantis Studies in Dynamical Systems ; 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02733nam a22005055i 4500
001 978-94-6239-124-6
003 DE-He213
005 20160321093335.0
007 cr nn 008mamaa
008 160321s2016 fr | s |||| 0|eng d
020 |a 9789462391246  |9 978-94-6239-124-6 
024 7 |a 10.2991/978-94-6239-124-6  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Duarte, Pedro.  |e author. 
245 1 0 |a Lyapunov Exponents of Linear Cocycles  |h [electronic resource] :  |b Continuity via Large Deviations /  |c by Pedro Duarte, Silvius Klein. 
250 |a 1st ed. 2016. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2016. 
300 |a XIII, 263 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Dynamical Systems ;  |v 3 
505 0 |a Introduction -- Estimates on Grassmann Manifolds -- Abstract Continuity of Lyapunov Exponents -- The Oseledets Filtration and Decomposition -- Large Deviations for Random Cocycles -- Large Deviations for Quasi-Periodic Cocycles -- Further Related Problems. 
520 |a The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematical Physics. 
700 1 |a Klein, Silvius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462391239 
830 0 |a Atlantis Studies in Dynamical Systems ;  |v 3 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-124-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)