The Geometrical Beauty of Plants

This book focuses on the origin of the Gielis curves, surfaces and transformations in the plant sciences. It is shown how these transformations, as a generalization of the Pythagorean Theorem, play an essential role in plant morphology and development. New insights show how plants can be understood...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gielis, Johan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press : Imprint: Atlantis Press, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02518nam a22004815i 4500
001 978-94-6239-151-2
003 DE-He213
005 20170601185039.0
007 cr nn 008mamaa
008 170601s2017 fr | s |||| 0|eng d
020 |a 9789462391512  |9 978-94-6239-151-2 
024 7 |a 10.2991/978-94-6239-151-2  |2 doi 
040 |d GrThAP 
050 4 |a QK1-989 
072 7 |a PST  |2 bicssc 
072 7 |a SCI011000  |2 bisacsh 
072 7 |a NAT026000  |2 bisacsh 
082 0 4 |a 580  |2 23 
100 1 |a Gielis, Johan.  |e author. 
245 1 4 |a The Geometrical Beauty of Plants  |h [electronic resource] /  |c by Johan Gielis. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2017. 
300 |a XXV, 229 p. 114 illus., 98 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1.Universal Natural Shapes -- 2.Towards a geometrical theory of morphogenesis -- 3.-1,-2,-3......,Understand The Legacy -- 4.Lamé curves and surfaces -- 5.Gielis curves, surfaces and transformations -- 6.Pythagorean-compact. - 7.Generalized intrinsic and extrinsic lengths in submanifolds. 
520 |a This book focuses on the origin of the Gielis curves, surfaces and transformations in the plant sciences. It is shown how these transformations, as a generalization of the Pythagorean Theorem, play an essential role in plant morphology and development. New insights show how plants can be understood as developing mathematical equations, which opens the possibility of directly solving analytically any boundary value problems (stress, diffusion, vibration...) . The book illustrates how form, development and evolution of plants unveil as a musical symphony. The reader will gain insight in how the methods are applicable in many divers scientific and technological fields. 
650 0 |a Life sciences. 
650 0 |a Computer graphics. 
650 0 |a Plant science. 
650 0 |a Botany. 
650 0 |a Mathematical physics. 
650 1 4 |a Life Sciences. 
650 2 4 |a Plant Sciences. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Computer Graphics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789462391505 
856 4 0 |u http://dx.doi.org/10.2991/978-94-6239-151-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)