Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference

The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Goertzel, Ben (Συγγραφέας), Geisweiller, Nil (Συγγραφέας), Coelho, Lucio (Συγγραφέας), Janičić, Predrag (Συγγραφέας), Pennachin, Cassio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press, 2011.
Σειρά:Atlantis Thinking Machines, 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03380nam a22005175i 4500
001 978-94-91216-11-4
003 DE-He213
005 20151125222152.0
007 cr nn 008mamaa
008 111201s2011 fr | s |||| 0|eng d
020 |a 9789491216114  |9 978-94-91216-11-4 
024 7 |a 10.2991/978-94-91216-11-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Goertzel, Ben.  |e author. 
245 1 0 |a Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference  |h [electronic resource] /  |c by Ben Goertzel, Nil Geisweiller, Lucio Coelho, Predrag Janičić, Cassio Pennachin. 
264 1 |a Paris :  |b Atlantis Press,  |c 2011. 
300 |a IX, 269 p. 59 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Thinking Machines,  |x 1877-3273 ;  |v 1 
505 0 |a Introduction -- Knowledge Representation Using Formal Logic -- Quantifying and Managing Uncertainty -- Representing Temporal Knowledge -- Temporal Reasoning -- Representing and Reasoning On Spatial Knowledge -- Representing and Reasoning on Contextual Knowledge -- Causal Reasoning -- Extracting Logical Knowledge from Raw Data -- Scalable Spatiotemporal Logical Knowledge Storage -- Mining Patterns from Large Spatiotemporal Logical Knowledge Stores -- Probabilistic Logic Networks -- Temporal and Contextual Reasoning in PLN -- Inferring the Causes of Observed Changes.-Adaptive Inference Control. 
520 |a The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses – querying, data mining, data analysis – is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Management information systems. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Science, general. 
650 2 4 |a Management of Computing and Information Systems. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Geisweiller, Nil.  |e author. 
700 1 |a Coelho, Lucio.  |e author. 
700 1 |a Janičić, Predrag.  |e author. 
700 1 |a Pennachin, Cassio.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789491216107 
830 0 |a Atlantis Thinking Machines,  |x 1877-3273 ;  |v 1 
856 4 0 |u http://dx.doi.org/10.2991/978-94-91216-11-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)