The Wavelet Transform

The wavelet transform has emerged as one of the most promising function transforms with great potential in applications during the last four decades. The present monograph is an outcome of the recent researches by the author and his co-workers, most of which are not available in a book form. Neverth...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pathak, Ram Shankar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press, 2009.
Σειρά:Atlantis Studies in Mathematics for Engineering and Science, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03458nam a22004335i 4500
001 978-94-91216-24-4
003 DE-He213
005 20150520200357.0
007 cr nn 008mamaa
008 120301s2009 fr | s |||| 0|eng d
020 |a 9789491216244  |9 978-94-91216-24-4 
024 7 |a 10.2991/978-94-91216-24-4  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Pathak, Ram Shankar.  |e author. 
245 1 4 |a The Wavelet Transform  |h [electronic resource] /  |c by Ram Shankar Pathak. 
264 1 |a Paris :  |b Atlantis Press,  |c 2009. 
300 |a XIII, 178p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Mathematics for Engineering and Science,  |x 1875-7642 ;  |v 4 
505 0 |a An Overview -- TheWavelet Transform on Lp -- Composition ofWavelet Transforms -- TheWavelet Transform on Spaces of Type S -- The Wavelet Transform on Spaces of Type W -- The Wavelet Transform on a Generalized Sobolev Space -- A Class of Convolutions: Convolution for the Wavelet Transform -- The Wavelet Convolution Product -- Asymptotic Expansions of the Wavelet Transform when |b| is Large -- Asymptotic Expansions of the Wavelet Transform for Large and Small Values of a. 
520 |a The wavelet transform has emerged as one of the most promising function transforms with great potential in applications during the last four decades. The present monograph is an outcome of the recent researches by the author and his co-workers, most of which are not available in a book form. Nevertheless, it also contains the results of many other celebrated workers of the ?eld. The aim of the book is to enrich the theory of the wavelet transform and to provide new directions for further research in theory and applications of the wavelet transform. The book does not contain any sophisticated Mathematics. It is intended for graduate students of Mathematics, Physics and Engineering sciences, as well as interested researchers from other ?elds. The Fourier transform has wide applications in Pure and Applied Mathematics, Physics and Engineering sciences; but sometimes one has to make compromise with the results obtainedbytheFouriertransformwiththephysicalintuitions. ThereasonisthattheFourier transform does not re?ect the evolution over time of the (physical) spectrum and thus it contains no local information. The continuous wavelet transform (W f)(b,a), involving ? wavelet ?, translation parameterb and dilation parametera, overcomes these drawbacks of the Fourier transform by representing signals (time dependent functions) in the phase space (time/frequency) plane with a local frequency resolution. The Fourier transform is p n restricted to the domain L (R ) with 1 p 2, whereas the wavelet transform can be de?ned for 1 p. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Atlantis Studies in Mathematics for Engineering and Science,  |x 1875-7642 ;  |v 4 
856 4 0 |u http://dx.doi.org/10.2991/978-94-91216-24-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)