Topological Groups and Related Structures

Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Arhangel’skii, Alexander (Συγγραφέας), Tkachenko, Mikhail (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Paris : Atlantis Press, 2008.
Σειρά:Atlantis Studies in Mathematics, 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03506nam a22004575i 4500
001 978-94-91216-35-0
003 DE-He213
005 20140518172728.0
007 cr nn 008mamaa
008 120301s2008 fr | s |||| 0|eng d
020 |a 9789491216350  |9 978-94-91216-35-0 
024 7 |a 10.2991/978-94-91216-35-0  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Arhangel’skii, Alexander.  |e author. 
245 1 0 |a Topological Groups and Related Structures  |h [electronic resource] /  |c by Alexander Arhangel’skii, Mikhail Tkachenko. 
264 1 |a Paris :  |b Atlantis Press,  |c 2008. 
300 |a XIV, 781p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Mathematics,  |x 1875-7634 ;  |v 1 
505 0 |a to Topological Groups and Semigroups -- Right Topological and Semitopological Groups -- Topological groups: Basic constructions -- Some Special Classes of Topological Groups -- Cardinal Invariants of Topological Groups -- Moscow Topological Groups and Completions of Groups -- Free Topological Groups -- R-Factorizable Topological Groups -- Compactness and its Generalizations in Topological Groups -- Actions of Topological Groups on Topological Spaces. 
520 |a Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Topology. 
700 1 |a Tkachenko, Mikhail.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Atlantis Studies in Mathematics,  |x 1875-7634 ;  |v 1 
856 4 0 |u http://dx.doi.org/10.2991/978-94-91216-35-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)