Longitudinal Data Analysis Autoregressive Linear Mixed Effects Models /

This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Funatogawa, Ikuko (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Funatogawa, Takashi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:JSS Research Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03696nam a2200481 4500
001 978-981-10-0077-5
003 DE-He213
005 20191025182115.0
007 cr nn 008mamaa
008 190204s2018 si | s |||| 0|eng d
020 |a 9789811000775  |9 978-981-10-0077-5 
024 7 |a 10.1007/978-981-10-0077-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Funatogawa, Ikuko.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Longitudinal Data Analysis  |h [electronic resource] :  |b Autoregressive Linear Mixed Effects Models /  |c by Ikuko Funatogawa, Takashi Funatogawa. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a X, 141 p. 27 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
505 0 |a Chapter 1. Linear mixed effects model -- Chapter 2. Autoregressive linear mixed effects model -- Chapter 3. Bivariate longitudinal data -- Chapter 4. State-space representation -- Chapter 5. Missing data, time dependent covariate -- Chapter 6. Pretest-Posttest data. 
520 |a This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods.  |0 http://scigraph.springernature.com/things/product-market-codes/S11001 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 http://scigraph.springernature.com/things/product-market-codes/S12008 
700 1 |a Funatogawa, Takashi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811000768 
776 0 8 |i Printed edition:  |z 9789811000782 
830 0 |a JSS Research Series in Statistics,  |x 2364-0057 
856 4 0 |u https://doi.org/10.1007/978-981-10-0077-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)