Big Visual Data Analysis Scene Classification and Geometric Labeling /

This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chen, Chen (Συγγραφέας), Ren, Yuzhuo (Συγγραφέας), Kuo, C.-C. Jay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03043nam a22005655i 4500
001 978-981-10-0631-9
003 DE-He213
005 20160226021440.0
007 cr nn 008mamaa
008 160224s2016 si | s |||| 0|eng d
020 |a 9789811006319  |9 978-981-10-0631-9 
024 7 |a 10.1007/978-981-10-0631-9  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Chen, Chen.  |e author. 
245 1 0 |a Big Visual Data Analysis  |h [electronic resource] :  |b Scene Classification and Geometric Labeling /  |c by Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a X, 122 p. 94 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work. 
520 |a This book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Visualization. 
700 1 |a Ren, Yuzhuo.  |e author. 
700 1 |a Kuo, C.-C. Jay.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811006296 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-0631-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)