Principal Component Regression for Crop Yield Estimation

This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequent...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Suryanarayana, T.M.V (Συγγραφέας), Mistry, P. B. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03367nam a22006015i 4500
001 978-981-10-0663-0
003 DE-He213
005 20160321151159.0
007 cr nn 008mamaa
008 160321s2016 si | s |||| 0|eng d
020 |a 9789811006630  |9 978-981-10-0663-0 
024 7 |a 10.1007/978-981-10-0663-0  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Suryanarayana, T.M.V.  |e author. 
245 1 0 |a Principal Component Regression for Crop Yield Estimation  |h [electronic resource] /  |c by T.M.V Suryanarayana, P. B Mistry. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 67 p. 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Principal Component Analysis In Transfer Function -- Review of Litrrature -- Study Area and Data Collection -- Methodology -- Conclusions. 
520 |a This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of principal component regression models and applying the same for the crop yield estimation. 
650 0 |a Engineering. 
650 0 |a Environmental management. 
650 0 |a Climate change. 
650 0 |a Agriculture. 
650 0 |a Statistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Environmental sciences. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Climate Change/Climate Change Impacts. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Math. Appl. in Environmental Science. 
650 2 4 |a Agriculture. 
650 2 4 |a Water Policy/Water Governance/Water Management. 
700 1 |a Mistry, P. B.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811006623 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-0663-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)