Spatio-Temporal Recommendation in Social Media

This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recomm...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yin, Hongzhi (Συγγραφέας), Cui, Bin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03148nam a22005175i 4500
001 978-981-10-0748-4
003 DE-He213
005 20160613142317.0
007 cr nn 008mamaa
008 160519s2016 si | s |||| 0|eng d
020 |a 9789811007484  |9 978-981-10-0748-4 
024 7 |a 10.1007/978-981-10-0748-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Yin, Hongzhi.  |e author. 
245 1 0 |a Spatio-Temporal Recommendation in Social Media  |h [electronic resource] /  |c by Hongzhi Yin, Bin Cui. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 114 p. 26 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1. Introduction -- 2. Temporal Context-Aware Recommendation -- 3. Spatial Context-Aware Recommendation -- 4. Location-based and Real-time Recommendation -- 5. Fast Online Recommendation. . 
520 |a This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recommender techniques. The book subsequently presents a series of latent-class user models to simulate users’ behaviors in decision-making processes, which effectively overcome the challenges arising from temporal dynamics of users’ behaviors, user interest drift over geographical regions, data sparsity and cold start. Based on these well designed user models, the book develops effective multi-dimensional index structures such as Metric-Tree, and proposes efficient top-k retrieval algorithms to accelerate the process of online recommendation and support real-time recommendation. In addition, it offers methodologies and techniques for evaluating both the effectiveness and efficiency of spatio-temporal recommendation systems in social media. The book will appeal to a broad readership, from researchers and developers to undergraduate and graduate students. 
650 0 |a Computer science. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Database Management. 
700 1 |a Cui, Bin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811007477 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-0748-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)