Analysis I Third Edition /

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book dis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Tao, Terence (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Σειρά:Texts and Readings in Mathematics, 37
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02881nam a22004335i 4500
001 978-981-10-1789-6
003 DE-He213
005 20160829104545.0
007 cr nn 008mamaa
008 160829s2016 si | s |||| 0|eng d
020 |a 9789811017896  |9 978-981-10-1789-6 
024 7 |a 10.1007/978-981-10-1789-6  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Tao, Terence.  |e author. 
245 1 0 |a Analysis I  |h [electronic resource] :  |b Third Edition /  |c by Terence Tao. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XIX, 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 37 
505 0 |a Chapter 1. Introduction -- Chapter 2. Starting at the beginning: the natural numbers -- Chapter 3. Set theory -- Chapter 4. Integers and rationals -- Chapter 5. The real numbers -- Chapter 6. Limits of sequences -- Chapter 7. Series -- Chapter 8. Infinite sets -- Chapter 9. Continuous functions on R -- Chapter 10. Differentiation of functions -- Chapter 11. The Riemann integral. . 
520 |a This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory. . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 37 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-1789-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)