New Theory of Discriminant Analysis After R. Fisher Advanced Research by the Feature Selection Method for Microarray Data /
This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam sco...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2016.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 New Theory of Discriminant Analysis
- 1.1 Introduction
- 1.2 Motivation for our Research
- 1.3 Discriminant Functions
- 1.4 Unresolved Problem (Problem 1)
- 1.5 LSD Discrimination (Problem 2)
- 1.6 Generalized Inverse Matrices (Problem 3)
- 1.7 K-fold Cross-validation (Problem 4)
- 1.8 Matroska Feature Selection Method (Problem 5)
- 1.9 Summary
- References
- 2 Iris Data and Fisher’s Assumption
- 2.1 Introduction
- 2.2 Iris Data
- 2.3 Comparison of Seven LDFs
- 2.4 100-folf Cross-validation for Small Sample Method (Method 1)
- 2.5 Summary
- References
- 3 The Cephalo-Pelvic Disproportion (CPD) Data with Collinearity
- 3.1 Introduction
- 3.2 CPD Data
- 3.3 100-folf Cross-validation
- 3.4 Trial to Remove Collinearity
- 3.5 Summary
- References
- 4 Student Data and Problem 1
- 4.1 Introduction
- 4.2 Student Data
- 4.3 100-folf Cross-validation for Student Data
- 4.4 Student Linearly Separable Data
- 4.5 Summary
- References
- 5 The Pass/Fail Determination using Exam Scores -A Trivial Linear Discriminant Function
- 5.1 Introduction
- 5.2 Pass/Fail Determination by Exam Scores Data in 2012
- 5.3 Pass/Fail Determination by Exam Scores (50% Level in 2012)
- 5.4 Pass/Fail Determination by Exam Scores (90% Level in 2012)
- 5.5 Pass/Fail Determination by Exam Scores (10% Level in 2012)
- 5.6 Summary
- 6 Best Model for the Swiss Banknote Data – Explanation 1 of Matroska Feature -selection Method (Method 2) -. References
- 6 Best Model for Swiss Banknote Data
- 6.1 Introduction
- 6.2 Swiss Banknote Data
- 6.3 100-folf Cross-validation for Small Sample Method
- 6.4 Explanation 1 for Swiss Banknote Data
- 6.5 Summary
- References
- 7 Japanese Automobile Data – Explanation 2 of Matroska Feature Selection Method (Method 2)
- 7.1 Introduction
- 7.2 Japanese Automobile Data
- 7.3 100-folf Cross-validation (Method 1)
- 7.4 Matroska Feature Selection Method (Method 2)
- 7.5 Summary
- References
- 8 Matroska Feature Selection Method for Microarray Data (Method 2)
- 8.1 Introduction
- 8.2 Matroska Feature Selection Method (Method2)
- 8.3 Results of the Golub et al. Dataset
- 8.4 How to Analyze the First BGS
- 8.5 Statistical Analysis of SM1
- 8.6 Summary
- References
- 9 LINGO Program 1 of Method 1
- 9.1 Introduction
- 9.2 Natural (Mathematical) Notation by LINGO
- 9.3 Iris Data in Excel
- 9.4 Six LDFs by LINGO
- 9.5 Discrimination of Iris Data by LINGO
- 9.6 How to Generate Re-sampling Samples and Prepare Data in Excel File
- 9.7 Set Model by LINGO
- Index.