New Theory of Discriminant Analysis After R. Fisher Advanced Research by the Feature Selection Method for Microarray Data /

This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam sco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shinmura, Shuichi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 New Theory of Discriminant Analysis
  • 1.1 Introduction
  • 1.2 Motivation for our Research
  • 1.3 Discriminant Functions
  • 1.4 Unresolved Problem (Problem 1)
  • 1.5 LSD Discrimination (Problem 2)
  • 1.6 Generalized Inverse Matrices (Problem 3)
  • 1.7 K-fold Cross-validation (Problem 4)
  • 1.8 Matroska Feature Selection Method (Problem 5)
  • 1.9 Summary
  • References
  • 2 Iris Data and Fisher’s Assumption
  • 2.1 Introduction
  • 2.2 Iris Data
  • 2.3 Comparison of Seven LDFs
  • 2.4 100-folf Cross-validation for Small Sample Method (Method 1)
  • 2.5 Summary
  • References
  • 3 The Cephalo-Pelvic Disproportion (CPD) Data with Collinearity
  • 3.1 Introduction
  • 3.2 CPD Data
  • 3.3 100-folf Cross-validation
  • 3.4 Trial to Remove Collinearity
  • 3.5 Summary
  • References
  • 4 Student Data and Problem 1
  • 4.1 Introduction
  • 4.2 Student Data
  • 4.3 100-folf Cross-validation for Student Data
  • 4.4 Student Linearly Separable Data
  • 4.5 Summary
  • References
  • 5 The Pass/Fail Determination using Exam Scores -A Trivial Linear Discriminant Function
  • 5.1 Introduction
  • 5.2 Pass/Fail Determination by Exam Scores Data in 2012
  • 5.3 Pass/Fail Determination by Exam Scores (50% Level in 2012)
  • 5.4 Pass/Fail Determination by Exam Scores (90% Level in 2012)
  • 5.5 Pass/Fail Determination by Exam Scores (10% Level in 2012)
  • 5.6 Summary
  • 6 Best Model for the Swiss Banknote Data – Explanation 1 of Matroska Feature -selection Method (Method 2) -. References
  • 6 Best Model for Swiss Banknote Data
  • 6.1 Introduction
  • 6.2 Swiss Banknote Data
  • 6.3 100-folf Cross-validation for Small Sample Method
  • 6.4 Explanation 1 for Swiss Banknote Data
  • 6.5 Summary
  • References
  • 7 Japanese Automobile Data – Explanation 2 of Matroska Feature Selection Method (Method 2)
  • 7.1 Introduction
  • 7.2 Japanese Automobile Data
  • 7.3 100-folf Cross-validation (Method 1)
  • 7.4 Matroska Feature Selection Method (Method 2)
  • 7.5 Summary
  • References
  • 8 Matroska Feature Selection Method for Microarray Data (Method 2)
  • 8.1 Introduction
  • 8.2 Matroska Feature Selection Method (Method2)
  • 8.3 Results of the Golub et al. Dataset
  • 8.4 How to Analyze the First BGS
  • 8.5 Statistical Analysis of SM1
  • 8.6 Summary
  • References
  • 9 LINGO Program 1 of Method 1
  • 9.1 Introduction
  • 9.2 Natural (Mathematical) Notation by LINGO
  • 9.3 Iris Data in Excel
  • 9.4 Six LDFs by LINGO
  • 9.5 Discrimination of Iris Data by LINGO
  • 9.6 How to Generate Re-sampling Samples and Prepare Data in Excel File
  • 9.7 Set Model by LINGO
  • Index.