Advanced Statistical Methods in Data Science

This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chen, Ding-Geng (Επιμελητής έκδοσης), Chen, Jiahua (Επιμελητής έκδοσης), Lu, Xuewen (Επιμελητής έκδοσης), Yi, Grace Y. (Επιμελητής έκδοσης), Yu, Hao (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Σειρά:ICSA Book Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04587nam a22005055i 4500
001 978-981-10-2594-5
003 DE-He213
005 20180103142320.0
007 cr nn 008mamaa
008 161201s2016 si | s |||| 0|eng d
020 |a 9789811025945  |9 978-981-10-2594-5 
024 7 |a 10.1007/978-981-10-2594-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Advanced Statistical Methods in Data Science  |h [electronic resource] /  |c edited by Ding-Geng Chen, Jiahua Chen, Xuewen Lu, Grace Y. Yi, Hao Yu. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XVI, 222 p. 41 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a ICSA Book Series in Statistics,  |x 2199-0980 
505 0 |a Part I: Data Analysis Based on Latent or Dependent Variable Models -- Chapter 1: A New Method for Robust Mixture Regression and Outlier Detection -- Chapter 2: The Mixture Gatekeeping Procedure Based on Weighted Multiple Testing Correction for Correlated Tests -- Chapter 3: Regularization in Regime-switching Gaussian Autoregressive Models -- Chapter 4: Modeling Zero Inflation and Over-dispersion in the Length of Hospital Stay for Patients with Ischaemic Heart Disease -- Chapter 5: Robust Optimal Interval Design for High-Dimensional Dose Finding in Multi-Agent Combination Trials -- Part II: Life Time Data Analysis -- Chapter 6: Group Selection in Semi-parametric Accelerated Failure Time Model -- Chapter 7: A Proportional Odds Model for Regression Analysis of Case I Interval-Censored Data -- Chapter 8: Empirical Likelihood Inference under Density Ratio Models Based on Type I Censored Samples: Hypothesis Testing and Quantile Estimation -- Chapter 9: Recent Development in the Joint Modeling of Longitudinal Quality of Life Measurements and Survival Data from Cancer Clinical Trials -- Part III: Applied Data Analysis -- Chapter 10: Confidence Weighting Procedures for Multiple Choice Tests -- Chapter 11: Improving the Robustness of Parametric Imputation -- Chapter 12: Maximum Smoothed Likelihood Estimation of the Centre of a Symmetric Distribution -- Chapter 13: Dividend Pay-out Problems with the Logarithmic Utility -- Chapter 14: Modeling the Common Risk among Equities: A Multivariate Time Series Model with an Additive GARCH Structure. 
520 |a This book gathers invited presentations from the 2nd Symposium of the ICSA- CANADA Chapter held at the University of Calgary from August 4-6, 2015. The aim of this Symposium was to promote advanced statistical methods in big-data sciences and to allow researchers to exchange ideas on statistics and data science and to embraces the challenges and opportunities of statistics and data science in the modern world.  It addresses diverse themes in advanced statistical analysis in big-data sciences, including methods for administrative data analysis, survival data analysis, missing data analysis, high-dimensional and genetic data analysis, longitudinal and functional data analysis, the design and analysis of studies with response-dependent and multi-phase designs, time series and robust statistics, statistical inference based on likelihood, empirical likelihood and estimating functions. The editorial group selected 14 high-quality presentations from this successful symposium and invited the presenters to prepare a full chapter for this book in order to disseminate the findings and promote further research collaborations in this area. This timely book offers new methods that impact advanced statistical model development in big-data sciences. 
650 0 |a Statistics. 
650 0 |a Big data. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
700 1 |a Chen, Ding-Geng.  |e editor. 
700 1 |a Chen, Jiahua.  |e editor. 
700 1 |a Lu, Xuewen.  |e editor. 
700 1 |a Yi, Grace Y.  |e editor. 
700 1 |a Yu, Hao.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811025938 
830 0 |a ICSA Book Series in Statistics,  |x 2199-0980 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-2594-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)