Lie Theory and Its Applications in Physics Varna, Bulgaria, June 2015 /

This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dobrev, Vladimir (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Σειρά:Springer Proceedings in Mathematics & Statistics, 191
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03565nam a22005895i 4500
001 978-981-10-2636-2
003 DE-He213
005 20161210103105.0
007 cr nn 008mamaa
008 161210s2016 si | s |||| 0|eng d
020 |a 9789811026362  |9 978-981-10-2636-2 
024 7 |a 10.1007/978-981-10-2636-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
245 1 0 |a Lie Theory and Its Applications in Physics  |h [electronic resource] :  |b Varna, Bulgaria, June 2015 /  |c edited by Vladimir Dobrev. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 614 p. 29 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 191 
505 0 |a Part 1: Plenary Talks -- Part 2: String Theories and Gravity Theories -- Part 3: Integrable Systems -- Part 4: Representation Theory -- Part 5: Supersymmetry and Quantum Groups -- Part 6: Vertex Algebras and Lie Algebra Structure Theory -- Part 7: Various Mathematical Results. 
520 |a This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.< This is a large interdisciplinary and interrelated field, and the present volume is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Functional analysis. 
650 0 |a Number theory. 
650 0 |a Mathematical physics. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
700 1 |a Dobrev, Vladimir.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811026355 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 191 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-2636-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)