Integral Points on Algebraic Varieties An Introduction to Diophantine Geometry /

This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geome...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Corvaja, Pietro (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2016.
Σειρά:HBA Lecture Notes in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02467nam a22004695i 4500
001 978-981-10-2648-5
003 DE-He213
005 20161122165659.0
007 cr nn 008mamaa
008 161122s2016 si | s |||| 0|eng d
020 |a 9789811026485  |9 978-981-10-2648-5 
024 7 |a 10.1007/978-981-10-2648-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Corvaja, Pietro.  |e author. 
245 1 0 |a Integral Points on Algebraic Varieties  |h [electronic resource] :  |b An Introduction to Diophantine Geometry /  |c by Pietro Corvaja. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 75 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a HBA Lecture Notes in Mathematics,  |x 2509-8063 
505 0 |a Chapter 1. Integral points on algebraic varieties -- Chapter 2. Diophantine approximation -- Chapter 3. The theorems of Thue and Siegel -- Chapter 4. Hilbert Irreducibility Theorem -- Chapter 5. Integral points on surfaces. 
520 |a This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Integral equations. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Integral Equations. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
830 0 |a HBA Lecture Notes in Mathematics,  |x 2509-8063 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-2648-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)