Principal Component Analysis Networks and Algorithms

This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kong, Xiangyu (Συγγραφέας), Hu, Changhua (Συγγραφέας), Duan, Zhansheng (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03289nam a22005415i 4500
001 978-981-10-2915-8
003 DE-He213
005 20170109091813.0
007 cr nn 008mamaa
008 170109s2017 si | s |||| 0|eng d
020 |a 9789811029158  |9 978-981-10-2915-8 
024 7 |a 10.1007/978-981-10-2915-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Kong, Xiangyu.  |e author. 
245 1 0 |a Principal Component Analysis Networks and Algorithms  |h [electronic resource] /  |c by Xiangyu Kong, Changhua Hu, Zhansheng Duan. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XXII, 323 p. 86 illus., 41 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Eigenvalue and singular value decomposition -- Principal component analysis neural networks -- Minor component analysis neural networks -- Dual purpose methods for principal and minor component analysis -- Deterministic discrete time system for PCA or MCA methods -- Generalized feature extraction method -- Coupled principal component analysis -- Singular feature extraction neural networks. 
520 |a This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields. 
650 0 |a Engineering. 
650 0 |a Algorithms. 
650 0 |a Pattern recognition. 
650 0 |a Neural networks (Computer science). 
650 0 |a Statistics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 |a Hu, Changhua.  |e author. 
700 1 |a Duan, Zhansheng.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811029134 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-2915-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)