Random Matrix Theory with an External Source

This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a...

Full description

Bibliographic Details
Main Authors: Brézin, Edouard (Author), Hikami, Shinobu (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2016.
Series:SpringerBriefs in Mathematical Physics, 19
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02860nam a22005415i 4500
001 978-981-10-3316-2
003 DE-He213
005 20170113055701.0
007 cr nn 008mamaa
008 170113s2016 si | s |||| 0|eng d
020 |a 9789811033162  |9 978-981-10-3316-2 
024 7 |a 10.1007/978-981-10-3316-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Brézin, Edouard.  |e author. 
245 1 0 |a Random Matrix Theory with an External Source  |h [electronic resource] /  |c by Edouard Brézin, Shinobu Hikami. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 138 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 19 
520 |a This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to compute various topological invariants for surfaces such as the intersection numbers for curves drawn on a surface of given genus with marked points, Euler characteristics, and the Gromov–Witten invariants. A remarkable duality for the average of characteristic polynomials is essential for obtaining such topological invariants. The analysis is extended to nonorientable surfaces and to surfaces with boundaries. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a System theory. 
650 0 |a Mathematical physics. 
650 0 |a Nuclear physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Particle and Nuclear Physics. 
650 2 4 |a Complex Systems. 
700 1 |a Hikami, Shinobu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811033155 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-3316-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)