Descriptive Data Mining

This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Olson, David L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Computational Risk Management,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03230nam a22004815i 4500
001 978-981-10-3340-7
003 DE-He213
005 20161210124307.0
007 cr nn 008mamaa
008 161210s2017 si | s |||| 0|eng d
020 |a 9789811033407  |9 978-981-10-3340-7 
024 7 |a 10.1007/978-981-10-3340-7  |2 doi 
040 |d GrThAP 
050 4 |a HF5548.125-HF5548.6 
072 7 |a KJQ  |2 bicssc 
072 7 |a BUS070030  |2 bisacsh 
082 0 4 |a 658.4038  |2 23 
100 1 |a Olson, David L.  |e author. 
245 1 0 |a Descriptive Data Mining  |h [electronic resource] /  |c by David L. Olson. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 116 p. 63 illus., 60 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Risk Management,  |x 2191-1436 
505 0 |a Chapter 1 Knowledge Management -- Chapter 2: Data Visualization -- Chapter 3 Market Basket Analysis -- Chapter 4 Recency Frequency and Monetary Model -- Chapter 5 Association Rules -- Chapter 6 Cluster Analysis -- Chapter 7 Link Analysis -- Chapter 7 Link Analysis -- Chapter 8 Descriptive Data Mining -- References -- Index. 
520 |a This book offers an overview of knowledge management. It starts with an introduction to the subject, placing descriptive models in the context of the overall field as well as within the more specific field of data mining analysis. Chapter 2 covers data visualization, including directions for accessing R open source software (described through Rattle). Both R and Rattle are free to students. Chapter 3 then describes market basket analysis, comparing it with more advanced models, and addresses the concept of lift. Subsequently, Chapter 4 describes smarketing RFM models and compares it with more advanced predictive models. Next, Chapter 5 describes association rules, including the APriori algorithm and provides software support from R. Chapter 6 covers cluster analysis, including software support from R (Rattle), KNIME, and WEKA, all of which are open source. Chapter 7 goes on to describe link analysis, social network metrics, and open source NodeXL software, and demonstrates link analysis application using PolyAnalyst output. Chapter 8 concludes the monograph. Using business-related data to demonstrate models, this descriptive book explains how methods work with some citations, but without detailed references. The data sets and software selected are widely available and can easily be accessed. 
650 0 |a Business. 
650 0 |a Big data. 
650 0 |a Risk management. 
650 0 |a Data mining. 
650 1 4 |a Business and Management. 
650 2 4 |a Big Data/Analytics. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Risk Management. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811033391 
830 0 |a Computational Risk Management,  |x 2191-1436 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-3340-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-BUM 
950 |a Business and Management (Springer-41169)