Spectral Analysis of Growing Graphs A Quantum Probability Point of View /

This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Obata, Nobuaki (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematical Physics, 20
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03199nam a22004935i 4500
001 978-981-10-3506-7
003 DE-He213
005 20170217125754.0
007 cr nn 008mamaa
008 170217s2017 si | s |||| 0|eng d
020 |a 9789811035067  |9 978-981-10-3506-7 
024 7 |a 10.1007/978-981-10-3506-7  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Obata, Nobuaki.  |e author. 
245 1 0 |a Spectral Analysis of Growing Graphs  |h [electronic resource] :  |b A Quantum Probability Point of View /  |c by Nobuaki Obata. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 138 p. 22 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 20 
505 0 |a 1. Graphs and Matrices -- 2. Spectra of Finite Graphs -- 3. Spectral Distributions of Graphs -- 4. Orthogonal Polynomials and Fock Spaces -- 5. Analytic Theory of Moments -- 6. Method of Quantum Decomposition -- 7. Graph Products and Asymptotics -- References -- Index. 
520 |a This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Graph theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811035050 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 20 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-3506-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)