Classical Summability Theory

This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable ser...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Natarajan, P.N (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03003nam a22004815i 4500
001 978-981-10-4205-8
003 DE-He213
005 20170427064657.0
007 cr nn 008mamaa
008 170427s2017 si | s |||| 0|eng d
020 |a 9789811042058  |9 978-981-10-4205-8 
024 7 |a 10.1007/978-981-10-4205-8  |2 doi 
040 |d GrThAP 
050 4 |a QA292 
050 4 |a QA295 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.24  |2 23 
100 1 |a Natarajan, P.N.  |e author. 
245 1 0 |a Classical Summability Theory  |h [electronic resource] /  |c by P.N. Natarajan. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 130 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Brief Introduction, General Summability Theory and Steinhaus Type Theorems -- Chapter 2. Core of a Sequence and the Matrix Class -- Chapter 3. Special Summability Methods -- Chapter 4. More Properties of the Method and Cauchy Multiplication of Certain Summable Series -- Chapter 5. The Silverman-Toeplitz, Schur's and Steinhaus Theorems for 4-dimensional Infinite Matrices -- Chapter 6. The Norlund, Weighted Mean and Methods for Double Sequences. 
520 |a This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Functional analysis. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811042041 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4205-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)