Algebra 1 Groups, Rings, Fields and Arithmetic /

This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate stu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Lal, Ramji (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Infosys Science Foundation Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02978nam a22005895i 4500
001 978-981-10-4253-9
003 DE-He213
005 20170805141102.0
007 cr nn 008mamaa
008 170509s2017 si | s |||| 0|eng d
020 |a 9789811042539  |9 978-981-10-4253-9 
024 7 |a 10.1007/978-981-10-4253-9  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Lal, Ramji.  |e author. 
245 1 0 |a Algebra 1  |h [electronic resource] :  |b Groups, Rings, Fields and Arithmetic /  |c by Ramji Lal. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 433 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Infosys Science Foundation Series,  |x 2363-6149 
505 0 |a Chapter 1. Language of mathematics 1 (Logic) -- Chapter 2. Language Of Mathematics 2 (Set Theory) -- Chapter 3. Number System -- Chapter 4. Group Theory -- Chapter 5. Fundamental Theorems -- Chapter 6. Permutation groups and Classical Groups -- Chapter 7. Elementary Theory of Rings and Fields -- Chapter 8. Number Theory 2 -- Chapter 9. Structure theory of groups -- Chapter 10. Structure theory continued -- Chapter 11. Arithmetic in Rings. 
520 |a This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Nonassociative rings. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811042522 
830 0 |a Infosys Science Foundation Series,  |x 2363-6149 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4253-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)