Breath Analysis for Medical Applications

This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhang, David (Συγγραφέας), Guo, Dongmin (Συγγραφέας), Yan, Ke (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03353nam a22004695i 4500
001 978-981-10-4322-2
003 DE-He213
005 20170623174653.0
007 cr nn 008mamaa
008 170623s2017 si | s |||| 0|eng d
020 |a 9789811043222  |9 978-981-10-4322-2 
024 7 |a 10.1007/978-981-10-4322-2  |2 doi 
040 |d GrThAP 
050 4 |a R858-R859.7 
072 7 |a UBH  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
082 0 4 |a 502.85  |2 23 
100 1 |a Zhang, David.  |e author. 
245 1 0 |a Breath Analysis for Medical Applications  |h [electronic resource] /  |c by David Zhang, Dongmin Guo, Ke Yan. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 309 p. 99 illus., 88 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction -- 2. Literature Review -- 3. A Novel Breath Acquisition System Design -- 4. An LDA Based Sensor Selection Approach -- 5. Sensor Evaluation in a Breath Acquisition System -- 6. Improving the Transfer Ability of Prediction Models -- 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples -- 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift -- 9. Drift Correction using Maximum Independence Domain Adaptation -- 10. Feature Selection and Analysis on Correlated Breath Data -- 11. Breath Sample Identification by Sparse Representation-based Classification -- 12. Monitor Blood Glucose Levels via Sparse Representation Approach -- 13. Diabetics by Means of Breath Signal Analysis -- 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System -- 16. Book Review and Future Work. 
520 |a This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection and fusion acquisition scheme. It then presents preprocessing techniques, such as drift removing and feature extraction methods, and uses case studies to explore the classification methods. Lastly it discusses promising research directions and potential medical applications of computerized breath diagnosis. It is a valuable interdisciplinary resource for researchers, professionals and postgraduate students working in various fields, including breath diagnosis, signal processing, pattern recognition, and biometrics. 
650 0 |a Computer science. 
650 0 |a Health informatics. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Health Informatics. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 |a Guo, Dongmin.  |e author. 
700 1 |a Yan, Ke.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811043215 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4322-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)