Breath Analysis for Medical Applications

This book describes breath signal processing technologies and their applications in medical sample classification and diagnosis. First, it provides a comprehensive introduction to breath signal acquisition methods, based on different kinds of chemical sensors, together with the optimized selection a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhang, David (Συγγραφέας), Guo, Dongmin (Συγγραφέας), Yan, Ke (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Introduction
  • 2. Literature Review
  • 3. A Novel Breath Acquisition System Design
  • 4. An LDA Based Sensor Selection Approach
  • 5. Sensor Evaluation in a Breath Acquisition System
  • 6. Improving the Transfer Ability of Prediction Models
  • 7. Learning Classification and Regression Models for Breath Data with Drift based on Transfer Samples
  • 8. A Transfer Learning Approach with Autoencoder for Correcting Instrumental Variation and Time-Varying Drift
  • 9. Drift Correction using Maximum Independence Domain Adaptation
  • 10. Feature Selection and Analysis on Correlated Breath Data
  • 11. Breath Sample Identification by Sparse Representation-based Classification
  • 12. Monitor Blood Glucose Levels via Sparse Representation Approach
  • 13. Diabetics by Means of Breath Signal Analysis
  • 14. A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction. 15. A Novel Medical E-Nose Signal Analysis System
  • 16. Book Review and Future Work.