Design and Control of Highly Conductive Single-Molecule Junctions A Focus on the Metal–Molecule Interface /

This thesis describes improvements to and control of the electrical conductance in single-molecule junctions (SMJs), which have potential applications in molecular electronics, with a focus on the bonding between the metal and molecule. In order to improve the electrical conductance, the π orbital o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kaneko, Satoshi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04253nam a22005655i 4500
001 978-981-10-4412-0
003 DE-He213
005 20170405131715.0
007 cr nn 008mamaa
008 170405s2017 si | s |||| 0|eng d
020 |a 9789811044120  |9 978-981-10-4412-0 
024 7 |a 10.1007/978-981-10-4412-0  |2 doi 
040 |d GrThAP 
050 4 |a QD450-882 
072 7 |a PNR  |2 bicssc 
072 7 |a SCI013050  |2 bisacsh 
082 0 4 |a 541  |2 23 
100 1 |a Kaneko, Satoshi.  |e author. 
245 1 0 |a Design and Control of Highly Conductive Single-Molecule Junctions  |h [electronic resource] :  |b A Focus on the Metal–Molecule Interface /  |c by Satoshi Kaneko. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 84 p. 40 illus., 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Theoretical background -- Experimental concepts and techniques -- Design of the metal–molecule interaction at the benzene single-molecule junction -- Design of the interface structure of a single-molecule junction utilizing spherical endohedral Ce@C82 metallofullerenes -- Anchoring groups enclosed in the π-conjugated system in N2 molecules -- Controlling the electrical property of highly conductive pyrazine single-molecule junction -- General conclusions. 
520 |a This thesis describes improvements to and control of the electrical conductance in single-molecule junctions (SMJs), which have potential applications in molecular electronics, with a focus on the bonding between the metal and molecule. In order to improve the electrical conductance, the π orbital of the molecule is directly bonded to the metal orbital, because anchoring groups, which were typically used in other studies to bind molecule with metal electrodes, became resistive spacers. Using this direct π-binding, the author has successfully demonstrated highly conductive SMJs involving benzene, endohedral metallofullerene Ce@C82, and nitrogen. Subsequently, the author investigated control of the electrical conductance of SMJs using pyrazine. The nitrogen atom in the π-conjugated system of pyrazine was expected to function as an anchoring point, and two bonding states were expected. One originates primarily from the π orbital, while the other originates primarily from an n state of the nitrogen. Measurements of conductance and dI/dV spectra coupled with theoretical calculations revealed that the pyrazine SMJ has bistable conductance states, in which the pyrazine axis is either tilted or parallel with respect to the junction axis. The bistable states were switched by changing the gap size between the metal electrodes using an external force. Notably, it is difficult to change the electrical properties of bulk-state materials using mechanical force. The findings reveal that the electron transport properties of a SMJ can be controlled by designing a proper metal–molecule interface, which has considerable potential for molecular electronics. Moreover, this thesis will serve as a guideline for every step of SMJ research: design, fabrication, evaluation, and control. 
650 0 |a Chemistry. 
650 0 |a Physical chemistry. 
650 0 |a Nanochemistry. 
650 0 |a Nanoscale science. 
650 0 |a Nanoscience. 
650 0 |a Nanostructures. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 0 |a Nanotechnology. 
650 1 4 |a Chemistry. 
650 2 4 |a Physical Chemistry. 
650 2 4 |a Nanoscale Science and Technology. 
650 2 4 |a Nanotechnology. 
650 2 4 |a Nanochemistry. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811044113 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4412-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)