Spatial Data Handling in Big Data Era Select Papers from the 17th IGU Spatial Data Handling Symposium 2016 /

This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zhou, Chenghu (Επιμελητής έκδοσης), Su, Fenzhen (Επιμελητής έκδοσης), Harvey, Francis (Επιμελητής έκδοσης), Xu, Jun (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Advances in Geographic Information Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03265nam a22005535i 4500
001 978-981-10-4424-3
003 DE-He213
005 20170504090909.0
007 cr nn 008mamaa
008 170504s2017 si | s |||| 0|eng d
020 |a 9789811044243  |9 978-981-10-4424-3 
024 7 |a 10.1007/978-981-10-4424-3  |2 doi 
040 |d GrThAP 
050 4 |a GA1-1776 
072 7 |a RGW  |2 bicssc 
072 7 |a SCI030000  |2 bisacsh 
072 7 |a TEC036000  |2 bisacsh 
082 0 4 |a 910.285  |2 23 
245 1 0 |a Spatial Data Handling in Big Data Era  |h [electronic resource] :  |b Select Papers from the 17th IGU Spatial Data Handling Symposium 2016 /  |c edited by Chenghu Zhou, Fenzhen Su, Francis Harvey, Jun Xu. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 237 p. 84 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Geographic Information Science,  |x 1867-2434 
505 0 |a Big geographical data storage and search -- Data-intensive geospatial computing and data mining -- Visualization of big geographical data -- Multi-scale spatial data representations, data structures and algorithms -- Space-time modelling and analysi -- Geological applications of Big Data and multi-criteria decision analysis. 
520 |a This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications. Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience. 
650 0 |a Geography. 
650 0 |a Earth sciences. 
650 0 |a Data structures (Computer science). 
650 0 |a Data mining. 
650 0 |a Geographical information systems. 
650 1 4 |a Geography. 
650 2 4 |a Geographical Information Systems/Cartography. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Storage Representation. 
650 2 4 |a Earth Sciences, general. 
700 1 |a Zhou, Chenghu.  |e editor. 
700 1 |a Su, Fenzhen.  |e editor. 
700 1 |a Harvey, Francis.  |e editor. 
700 1 |a Xu, Jun.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811044236 
830 0 |a Advances in Geographic Information Science,  |x 1867-2434 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4424-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)