Roadside Video Data Analysis Deep Learning /

This book highlights the methods and applications for roadside video data analysis, with a particular focus on the use of deep learning to solve roadside video data segmentation and classification problems. It describes system architectures and methodologies that are specifically built upon learning...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Verma, Brijesh (Συγγραφέας), Zhang, Ligang (Συγγραφέας), Stockwell, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Studies in Computational Intelligence, 711
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03153nam a22006015i 4500
001 978-981-10-4539-4
003 DE-He213
005 20170428114913.0
007 cr nn 008mamaa
008 170428s2017 si | s |||| 0|eng d
020 |a 9789811045394  |9 978-981-10-4539-4 
024 7 |a 10.1007/978-981-10-4539-4  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Verma, Brijesh.  |e author. 
245 1 0 |a Roadside Video Data Analysis  |h [electronic resource] :  |b Deep Learning /  |c by Brijesh Verma, Ligang Zhang, David Stockwell. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XXV, 189 p. 79 illus., 68 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 711 
505 0 |a Chapter 1: Introduction -- Chapter 2: Roadside Video Data Analysis Framework -- Chapter 3: Non-Deep Learning Techniques for Roadside Video Data Analysis -- Chapter 4: Deep Learning Techniques for Roadside Video Data Analysis -- Chapter 5: Case Study: Roadside Video Data Analysis for Fire Risk Assessment -- Chapter 6: Conclusion and Future Insight - References. 
520 |a This book highlights the methods and applications for roadside video data analysis, with a particular focus on the use of deep learning to solve roadside video data segmentation and classification problems. It describes system architectures and methodologies that are specifically built upon learning concepts for roadside video data processing, and offers a detailed analysis of the segmentation, feature extraction and classification processes. Lastly, it demonstrates the applications of roadside video data analysis including scene labelling, roadside vegetation classification and vegetation biomass estimation in fire risk assessment. 
650 0 |a Engineering. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Computer graphics. 
650 0 |a Computational intelligence. 
650 0 |a Transportation engineering. 
650 0 |a Traffic engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Transportation Technology and Traffic Engineering. 
700 1 |a Zhang, Ligang.  |e author. 
700 1 |a Stockwell, David.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811045387 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 711 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4539-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)