Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

This book provides a comprehensive introduction to Rough Set-based feature selection. It enables the reader to systematically study all topics of Rough Set Theory (RST) including the preliminaries, advanced concepts and feature selection using RST. In addition, the book is supplemented with an RST-b...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Raza, Muhammad Summair (Συγγραφέας), Qamar, Usman (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03131nam a22005295i 4500
001 978-981-10-4965-1
003 DE-He213
005 20170628141452.0
007 cr nn 008mamaa
008 170628s2017 si | s |||| 0|eng d
020 |a 9789811049651  |9 978-981-10-4965-1 
024 7 |a 10.1007/978-981-10-4965-1  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Raza, Muhammad Summair.  |e author. 
245 1 0 |a Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications  |h [electronic resource] /  |c by Muhammad Summair Raza, Usman Qamar. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 194 p. 75 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Feature Selection -- Background -- Rough Set Theory -- Advance Concepts in RST -- Rough Set Based Feature Selection Techniques -- Unsupervised Feature Selection using RST -- Critical Analysis of Feature Selection Algorithms -- RST Source Code. 
520 |a This book provides a comprehensive introduction to Rough Set-based feature selection. It enables the reader to systematically study all topics of Rough Set Theory (RST) including the preliminaries, advanced concepts and feature selection using RST. In addition, the book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms. Rough Set Theory, proposed in 1982 by Zdzislaw Pawlak, is an area in constant development. Focusing on the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis. Feature selection is one of the important applications of RST, and helps us select the features that provide us with the largest amount of useful information. The book offers a valuable reference guide for all students, researchers, and developers working in the areas of feature selection, knowledge discovery and reasoning with uncertainty, especially those involved in RST and granular computing. 
650 0 |a Computer science. 
650 0 |a Numerical analysis. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Numeric Computing. 
700 1 |a Qamar, Usman.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811049644 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-4965-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)