Semi-Infinite Fractional Programming

This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on e...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Verma, Ram U. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:Infosys Science Foundation Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04147nam a22004815i 4500
001 978-981-10-6256-8
003 DE-He213
005 20171023204117.0
007 cr nn 008mamaa
008 171023s2017 si | s |||| 0|eng d
020 |a 9789811062568  |9 978-981-10-6256-8 
024 7 |a 10.1007/978-981-10-6256-8  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Verma, Ram U.  |e author. 
245 1 0 |a Semi-Infinite Fractional Programming  |h [electronic resource] /  |c by Ram U. Verma. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Infosys Science Foundation Series,  |x 2363-6149 
505 0 |a Higher Order Parametric Optimality Conditions -- Parametric Duality Models -- New Generation Parametric Optimality -- Accelerated Roles for Parametric Optimality -- Semiinfinite Multiobjective Fractional Programming I -- Semiinfinite Multiobjective Fractional Programming II -- Semiinfinite Multiobjective Fractional Programming III -- Hanson-Antczak-type V-invexity I -- Hanson-Antczak-type V-invexity II -- Parameter Optimality in Semiinfinite Fractional Programs -- Semiinfinite Discrete Minmax Fractional Programs -- Next Generation Semiinfinite Discrete Fractional Programs -- Hanson-Antczak-type Sonvexity III -- Semiinfinite Multiobjective Optimization. 
520 |a This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems.   In the current interdisciplinary supercomputer-oriented research environment, semi-infinite fractional programming is among the most rapidly expanding research areas in terms of its multi-facet applications empowerment for real-world problems, which may stem from many control problems in robotics, outer approximation in geometry, and portfolio problems in economics, that can be transformed into semi-infinite problems as well as handled by transforming them into semi-infinite fractional programming problems. As a matter of fact, in mathematical optimisation programs, a fractional programming (or program) is a generalisation to linear fractional programming. These problems lay the theoretical foundation that enables us to fully investigate the second-order optimality and duality aspects of our principal fractional programming problem as well as its semi-infinite counterpart. 
650 0 |a Mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Statistics. 
650 0 |a Economic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811062551 
830 0 |a Infosys Science Foundation Series,  |x 2363-6149 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-6256-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)