Characterizing Interdependencies of Multiple Time Series Theory and Applications /
This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non ex...
| Κύριοι συγγραφείς: | , , , | 
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο | 
| Γλώσσα: | English | 
| Έκδοση: | Singapore :
        
      Springer Singapore : Imprint: Springer,    
    
      2017. | 
| Σειρά: | SpringerBriefs in Statistics, | 
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link | 
                Πίνακας περιεχομένων: 
            
                  - 1: Introduction to statistical causal analysis
- 2: Measures of one-way effect, reciprocity and association.- 3: Partial measures of interdependence.- 4: Inference based on the vector autoregressive and moving average model
- 5: Inference on change in causality measures.- 6: Simulation performance of estimation methods.- 7: Empirical analysis of macroeconomic series
- 8: Empirical analysis of change in causality measures.- 9: Conclusion.- Appendix.- References.- Index.
 
  
 