Musicality of Human Brain through Fractal Analytics

This book provides a comprehensive overview of how fractal analytics can lead to the extraction of interesting features from the complex electroencephalograph (EEG) signals generated by Hindustani classical music. It particularly focuses on how the brain responses to the emotional attributes of Hind...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ghosh, Dipak (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Sengupta, Ranjan (http://id.loc.gov/vocabulary/relators/aut), Sanyal, Shankha (http://id.loc.gov/vocabulary/relators/aut), Banerjee, Archi (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04854nam a2200637 4500
001 978-981-10-6511-8
003 DE-He213
005 20191027003053.0
007 cr nn 008mamaa
008 170927s2018 si | s |||| 0|eng d
020 |a 9789811065118  |9 978-981-10-6511-8 
024 7 |a 10.1007/978-981-10-6511-8  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
072 7 |a TTBM  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TTBM  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Ghosh, Dipak.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Musicality of Human Brain through Fractal Analytics  |h [electronic resource] /  |c by Dipak Ghosh, Ranjan Sengupta, Shankha Sanyal, Archi Banerjee. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XVII, 232 p. 119 illus., 111 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction -- Methodology -- Emotions from Hindustani Classical Music: An EEG based study with evidence of neural hysteresis -- Musical perception and visual imagery: Do musicians visualize while performing? -- Tanpura drone and brain dynamics: How a simple acoustic signal affects brain rhythms -- In search of universality of music: effect of cross cultural instrumental clips -- Gestalt phenomenon in music: which frequencies do we hear? -- Quantification of musical emotion with neural jitter-shimmer: novel study with hindustani music -- An approach to encapsulate improvisation in hindustani classical music -- Ambiguity in hindustani classical music: development of an automated algorithm to asses ambiguity -- Computing the pitch of an EEG signal: a new paradigm in analysis of bio-signals -- Epilogue. 
520 |a This book provides a comprehensive overview of how fractal analytics can lead to the extraction of interesting features from the complex electroencephalograph (EEG) signals generated by Hindustani classical music. It particularly focuses on how the brain responses to the emotional attributes of Hindustani classical music that have been long been a source of discussion for musicologists and psychologists. Using robust scientific techniques that are capable of looking into the most intricate dynamics of the complex EEG signals, it deciphers the human brain's response to different ragas of Hindustani classical music, shedding new light on what happens inside the performer's brain when they are mentally composing the imagery of a particular raga. It also explores the much- debated issue in the musical fraternity of whether there are any universal cues in music that make it identifiable for people throughout the world, and if so, what are the neural correlates associated with the universal cues? This book is of interest to researchers and scholars of music and the brain, nonlinear science, music cognition, music signal processing and music information retrieval. In addition, researchers in the field of nonlinear biomedical signal processing and music signal analysis benefit from this book.  . 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Neurosciences. 
650 0 |a Neurobiology. 
650 0 |a Neuropsychology. 
650 1 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
650 2 4 |a User Interfaces and Human Computer Interaction.  |0 http://scigraph.springernature.com/things/product-market-codes/I18067 
650 2 4 |a Neurosciences.  |0 http://scigraph.springernature.com/things/product-market-codes/B18006 
650 2 4 |a Neurobiology.  |0 http://scigraph.springernature.com/things/product-market-codes/L25066 
650 2 4 |a Neuropsychology.  |0 http://scigraph.springernature.com/things/product-market-codes/Y12030 
700 1 |a Sengupta, Ranjan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sanyal, Shankha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Banerjee, Archi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811065101 
776 0 8 |i Printed edition:  |z 9789811065125 
776 0 8 |i Printed edition:  |z 9789811348945 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u https://doi.org/10.1007/978-981-10-6511-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)