Bankruptcy Prediction through Soft Computing based Deep Learning Technique

This book proposes complex hierarchical deep architectures (HDA) for predicting bankruptcy, a topical issue for business and corporate institutions that in the past has been tackled using statistical, market-based and machine-intelligence prediction models. The HDA are formed through fuzzy rough ten...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chaudhuri, Arindam (Συγγραφέας), Ghosh, Soumya K. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03983nam a22005655i 4500
001 978-981-10-6683-2
003 DE-He213
005 20171201200804.0
007 cr nn 008mamaa
008 171201s2017 si | s |||| 0|eng d
020 |a 9789811066832  |9 978-981-10-6683-2 
024 7 |a 10.1007/978-981-10-6683-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.U83 
050 4 |a QA76.9.H85 
072 7 |a UYZG  |2 bicssc 
072 7 |a COM070000  |2 bisacsh 
082 0 4 |a 005.437  |2 23 
082 0 4 |a 4.019  |2 23 
100 1 |a Chaudhuri, Arindam.  |e author. 
245 1 0 |a Bankruptcy Prediction through Soft Computing based Deep Learning Technique  |h [electronic resource] /  |c by Arindam Chaudhuri, Soumya K Ghosh. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XVII, 102 p. 59 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Need of this Research -- Literature Review -- Bankruptcy Prediction Methodology -- Need for Risk Classification -- Experimental Framework: Bankruptcy Prediction using Soft Computing based Deep Learning Technique.- Datasets Used -- Experimental Results -- Conclusion . 
520 |a This book proposes complex hierarchical deep architectures (HDA) for predicting bankruptcy, a topical issue for business and corporate institutions that in the past has been tackled using statistical, market-based and machine-intelligence prediction models. The HDA are formed through fuzzy rough tensor deep staking networks (FRTDSN) with structured, hierarchical rough Bayesian (HRB) models. FRTDSN is formalized through TDSN and fuzzy rough sets, and HRB is formed by incorporating probabilistic rough sets in structured hierarchical Bayesian model. Then FRTDSN is integrated with HRB to form the compound FRTDSN-HRB model. HRB enhances the prediction accuracy of FRTDSN-HRB model. The experimental datasets are adopted from Korean construction companies and American and European non-financial companies, and the research presented focuses on the impact of choice of cut-off points, sampling procedures and business cycle on the accuracy of bankruptcy prediction models. The book also highlights the fact that misclassification can result in erroneous predictions leading to prohibitive costs to investors and the economy, and shows that choice of cut-off point and sampling procedures affect rankings of various models. It also suggests that empirical cut-off points estimated from training samples result in the lowest misclassification costs for all the models. The book confirms that FRTDSN-HRB achieves superior performance compared to other statistical and soft-computing models. The experimental results are given in terms of several important statistical parameters revolving different business cycles and sub-cycles for the datasets considered and are of immense benefit to researchers working in this area. 
650 0 |a Computer science. 
650 0 |a Banks and banking. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Management information systems. 
650 0 |a Statistics. 
650 1 4 |a Computer Science. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Management of Computing and Information Systems. 
650 2 4 |a Banking. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
700 1 |a Ghosh, Soumya K.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811066825 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-6683-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)