Bayesian Optimization for Materials Science

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Packwood, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in the Mathematics of Materials, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03069nam a22004095i 4500
001 978-981-10-6781-5
003 DE-He213
005 20171004115402.0
007 cr nn 008mamaa
008 171004s2017 si | s |||| 0|eng d
020 |a 9789811067815  |9 978-981-10-6781-5 
024 7 |a 10.1007/978-981-10-6781-5  |2 doi 
040 |d GrThAP 
100 1 |a Packwood, Daniel.  |e author. 
245 1 0 |a Bayesian Optimization for Materials Science  |h [electronic resource] /  |c by Daniel Packwood. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 42 p. 16 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 3 
505 0 |a Chapter 1. Overview of Bayesian optimization in materials science -- Chapter 2. Theory of Bayesian optimization -- Chapter 3. Bayesian optimization of molecules adsorbed to metal surfaces. 
520 |a This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra. 
650 0 |a Materials science. 
650 0 |a Statistics. 
650 1 4 |a Materials Science. 
650 2 4 |a Energy Materials. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistical Physics and Dynamical Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811067808 
830 0 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 3 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-6781-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)