Quandles and Topological Pairs Symmetry, Knots, and Cohomology /

This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nosaka, Takefumi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2017.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03405nam a22004695i 4500
001 978-981-10-6793-8
003 DE-He213
005 20171121142004.0
007 cr nn 008mamaa
008 171121s2017 si | s |||| 0|eng d
020 |a 9789811067938  |9 978-981-10-6793-8 
024 7 |a 10.1007/978-981-10-6793-8  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Nosaka, Takefumi.  |e author. 
245 1 0 |a Quandles and Topological Pairs  |h [electronic resource] :  |b Symmetry, Knots, and Cohomology /  |c by Takefumi Nosaka. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a IX, 136 p. 25 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
520 |a This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles. More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology. For applications in topology, it is shown that from the perspective that some existing results in topology can be recovered from some quandles, a method is provided to diagrammatically compute some “relative homology”. (Such classes since have been considered to be uncomputable and speculative). Furthermore, the book provides a perspective that unifies some previous studies of quandles. The former part of the book explains motivations for studying quandles and discusses basic properties of quandles. The latter focuses on low-dimensional topology or knot theory. Finally, problems and possibilities for future developments of quandle theory are posed. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a K-theory. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a K-Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811067921 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-981-10-6793-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)