Combustion Optimization Based on Computational Intelligence

This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the op...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhou, Hao (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Cen, Kefa (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Advanced Topics in Science and Technology in China,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03521nam a2200601 4500
001 978-981-10-7875-0
003 DE-He213
005 20191024212937.0
007 cr nn 008mamaa
008 180202s2018 si | s |||| 0|eng d
020 |a 9789811078750  |9 978-981-10-7875-0 
024 7 |a 10.1007/978-981-10-7875-0  |2 doi 
040 |d GrThAP 
050 4 |a T58.8 
072 7 |a TH  |2 bicssc 
072 7 |a TEC031000  |2 bisacsh 
072 7 |a TH  |2 thema 
082 0 4 |a 658.26  |2 23 
100 1 |a Zhou, Hao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Combustion Optimization Based on Computational Intelligence  |h [electronic resource] /  |c by Hao Zhou, Kefa Cen. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XXVI, 270 p. 229 illus., 129 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
505 0 |a The influence of combustion parameters on NOx emissions and carbon burnout -- Modeling methods for combustion characteristics -- Neural network modeling of combustion characteristics -- Support vector machine modeling the combustion characteristics -- Combining neural network or support vector machine with optimization algorithms to optimize the combustion -- Online combustion optimization system. 
520 |a This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the optimization of combustion parameters using genetic algorithms or ant colony algorithms, an online coal optimization system, etc. Accordingly, the book offers a unique guide for researchers in the areas of combustion optimization, NOx emission control, energy and power engineering, and chemical engineering. 
650 0 |a Energy efficiency. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Energy systems. 
650 0 |a Chemical engineering. 
650 0 |a Computational intelligence. 
650 1 4 |a Energy Efficiency.  |0 http://scigraph.springernature.com/things/product-market-codes/118000 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer.  |0 http://scigraph.springernature.com/things/product-market-codes/T14000 
650 2 4 |a Energy Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/115000 
650 2 4 |a Industrial Chemistry/Chemical Engineering.  |0 http://scigraph.springernature.com/things/product-market-codes/C27000 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
700 1 |a Cen, Kefa.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811078736 
776 0 8 |i Printed edition:  |z 9789811078743 
776 0 8 |i Printed edition:  |z 9789811356780 
830 0 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
856 4 0 |u https://doi.org/10.1007/978-981-10-7875-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367)