Investigations in Computational Sarcasm

This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment express...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Joshi, Aditya (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Bhattacharyya, Pushpak (http://id.loc.gov/vocabulary/relators/aut), Carman, Mark J. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Cognitive Systems Monographs, 37
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04497nam a2200553 4500
001 978-981-10-8396-9
003 DE-He213
005 20191022013332.0
007 cr nn 008mamaa
008 180316s2018 si | s |||| 0|eng d
020 |a 9789811083969  |9 978-981-10-8396-9 
024 7 |a 10.1007/978-981-10-8396-9  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Joshi, Aditya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Investigations in Computational Sarcasm  |h [electronic resource] /  |c by Aditya Joshi, Pushpak Bhattacharyya, Mark J. Carman. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XII, 143 p. 12 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Systems Monographs,  |x 1867-4925 ;  |v 37 
505 0 |a 1. Introduction -- 2. Literature Survey -- 3. Understanding the Phenomenon of Sarcasm -- 4. Sarcasm Detection using Incongruity within Target Text -- 5. Sarcasm Detection using Contextual Incongruity -- 6. Sarcasm Generation -- 7. Conclusion & Future Work. 
520 |a This book describes the authors' investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators? (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony? And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: 'intra-textual incongruity' where the authors look at incongruity within the text to be classified (i.e., target text) and 'context incongruity' where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author's historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media. 
650 0 |a Computational intelligence. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Signal processing. 
650 0 |a Image processing. 
650 0 |a Speech processing systems. 
650 1 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
650 2 4 |a Natural Language Processing (NLP).  |0 http://scigraph.springernature.com/things/product-market-codes/I21040 
650 2 4 |a Signal, Image and Speech Processing.  |0 http://scigraph.springernature.com/things/product-market-codes/T24051 
700 1 |a Bhattacharyya, Pushpak.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Carman, Mark J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811083952 
776 0 8 |i Printed edition:  |z 9789811083976 
776 0 8 |i Printed edition:  |z 9789811341397 
830 0 |a Cognitive Systems Monographs,  |x 1867-4925 ;  |v 37 
856 4 0 |u https://doi.org/10.1007/978-981-10-8396-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)