Principles in Noisy Optimization Applied to Multi-agent Coordination /

Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach n...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rakshit, Pratyusha (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Konar, Amit (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:Cognitive Intelligence and Robotics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04313nam a2200505 4500
001 978-981-10-8642-7
003 DE-He213
005 20191028122527.0
007 cr nn 008mamaa
008 181119s2018 si | s |||| 0|eng d
020 |a 9789811086427  |9 978-981-10-8642-7 
024 7 |a 10.1007/978-981-10-8642-7  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Rakshit, Pratyusha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Principles in Noisy Optimization  |h [electronic resource] :  |b Applied to Multi-agent Coordination /  |c by Pratyusha Rakshit, Amit Konar. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XVI, 367 p. 88 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
505 0 |a Chapter 1. Foundations in Evolutionary Optimization Algorithms -- Chapter 2. Multi-agent Coordination -- Chapter 3. Evolutionary Algorithms in Presence of Noise -- Chapter 4. Learning based Noisy Optimization -- Chapter 5. Noisy Coordination in Multi-objective Settings -- Chapter 6. Integrating Principles of Noisy Optimization with Evolutionary Optimization -- Chapter 7. Conclusion and Future Direction. 
520 |a Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach noisy optimization from a layman's perspective; this book remedies that gap. Beginning with the foundations of evolutionary optimization, the book subsequently explores the principles of noisy optimization in single and multi-objective settings, and presents detailed illustrations of the principles developed for application in real-world multi-agent coordination problems. Special emphasis is given to the design of intelligent algorithms for noisy optimization in real-time applications. The book is unique in terms of its content, writing style and above all its simplicity, which will appeal to readers with a broad range of backgrounds. The book is divided into 7 chapters, the first of which provides an introduction to Swarm and Evolutionary Optimization algorithms. Chapter 2 includes a thorough review of agent architectures for multi-agent coordination. In turn, Chapter 3 provides an extensive review of noisy optimization, while Chapter 4 addresses issues of noise handling in the context of single-objective optimization problems. An illustrative case study on multi-robot path-planning in the presence of measurement noise is also highlighted in this chapter. Chapter 5 deals with noisy multi-objective optimization and includes a case study on noisy multi-robot box-pushing. In Chapter 6, the authors examine the scope of various algorithms in noisy optimization problems. Lastly, Chapter 7 summarizes the main results obtained in the previous chapters and elaborates on the book's potential with regard to real-world noisy optimization problems. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Computers. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Optimization.  |0 http://scigraph.springernature.com/things/product-market-codes/M26008 
650 2 4 |a Theory of Computation.  |0 http://scigraph.springernature.com/things/product-market-codes/I16005 
700 1 |a Konar, Amit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811086410 
776 0 8 |i Printed edition:  |z 9789811086434 
830 0 |a Cognitive Intelligence and Robotics,  |x 2520-1956 
856 4 0 |u https://doi.org/10.1007/978-981-10-8642-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)