Classical Mirror Symmetry

This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov-Witten invariants of a Calabi-Yau threefold by using the Picard-Fuchs differential equation of period integrals of its mirror Calabi-Yau threefold. The book concentrates on the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jinzenji, Masao (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Mathematical Physics, 29
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04105nam a2200493 4500
001 978-981-13-0056-1
003 DE-He213
005 20191026101234.0
007 cr nn 008mamaa
008 180418s2018 si | s |||| 0|eng d
020 |a 9789811300561  |9 978-981-13-0056-1 
024 7 |a 10.1007/978-981-13-0056-1  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Jinzenji, Masao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Classical Mirror Symmetry  |h [electronic resource] /  |c by Masao Jinzenji. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a VIII, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 29 
505 0 |a 1. Brief Introduction of Mirror Symmetry -- 2. Topological Sigma Models (A-Model and B-Model) -- 3. Basics of Geometry of Complex Manifolds -- 4. Detailed Computation of B-Model Prediction -- 5. Moduli space of Holomorphic Maps from CP^1 to CP^{N-1} -- 6. Localization Computation -- 7. Brief Outline of Direct Proof of Mirror Theorem. 
520 |a This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov-Witten invariants of a Calabi-Yau threefold by using the Picard-Fuchs differential equation of period integrals of its mirror Calabi-Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construction of a pair of mirror Calabi-Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard-Fuchs differential equation of the period integrals and on the process of deriving the instanton expansion of the A-model Yukawa coupling based on the mirror symmetry hypothesis. On the A-model side, the moduli space of degree d quasimaps from CP^1 with two marked points to CP^4 is introduced, with reconstruction of the period integrals used in the B-model side as generating functions of the intersection numbers of the moduli space. Lastly, a mathematical justification for the process of the B-model computation from the point of view of the geometry of the moduli space of quasimaps is given. The style of description is between that of mathematics and physics, with the assumption that readers have standard graduate student backgrounds in both disciplines. 
650 0 |a Mathematical physics. 
650 0 |a Quantum field theory. 
650 0 |a String theory. 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Quantum Field Theories, String Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/P19048 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811300554 
776 0 8 |i Printed edition:  |z 9789811300578 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 29 
856 4 0 |u https://doi.org/10.1007/978-981-13-0056-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)