Evolutionary Approach to Machine Learning and Deep Neural Networks Neuro-Evolution and Gene Regulatory Networks /

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Iba, Hitoshi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04195nam a2200505 4500
001 978-981-13-0200-8
003 DE-He213
005 20191028231759.0
007 cr nn 008mamaa
008 180615s2018 si | s |||| 0|eng d
020 |a 9789811302008  |9 978-981-13-0200-8 
024 7 |a 10.1007/978-981-13-0200-8  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Iba, Hitoshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Approach to Machine Learning and Deep Neural Networks  |h [electronic resource] :  |b Neuro-Evolution and Gene Regulatory Networks /  |c by Hitoshi Iba. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XIII, 245 p. 127 illus., 84 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Meta-heuristics, machine learning and deep learning methods -- Evolutionary approach to deep learning -- Machine learning approach to evolutionary computation -- Evolutionary approach to gene regulatory networks -- Conclusion. 
520 |a This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields. Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution. The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 0 |a Biomathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Bioinformatics.  |0 http://scigraph.springernature.com/things/product-market-codes/L15001 
650 2 4 |a Mathematical and Computational Biology.  |0 http://scigraph.springernature.com/things/product-market-codes/M31000 
650 2 4 |a Computational Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/T11014 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811301995 
776 0 8 |i Printed edition:  |z 9789811302015 
776 0 8 |i Printed edition:  |z 9789811343582 
856 4 0 |u https://doi.org/10.1007/978-981-13-0200-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)