Computational Intelligence and Big Data Analytics Applications in Bioinformatics /

This book highlights major issues related to big data analysis using computational intelligence techniques, mostly interdisciplinary in nature. It comprises chapters on computational intelligence technologies, such as neural networks and learning algorithms, evolutionary computation, fuzzy systems a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Satyanarayana, Ch (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Rao, Kunjam Nageswara (http://id.loc.gov/vocabulary/relators/aut), Bush, Richard G. (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in Forensic and Medical Bioinformatics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This book highlights major issues related to big data analysis using computational intelligence techniques, mostly interdisciplinary in nature. It comprises chapters on computational intelligence technologies, such as neural networks and learning algorithms, evolutionary computation, fuzzy systems and other emerging techniques in data science and big data, ranging from methodologies, theory and algorithms for handling big data, to their applications in bioinformatics and related disciplines. The book describes the latest solutions, scientific results and methods in solving intriguing problems in the fields of big data analytics, intelligent agents and computational intelligence. It reflects the state of the art research in the field and novel applications of new processing techniques in computer science. This book is useful to both doctoral students and researchers from computer science and engineering fields and bioinformatics related domains.
Φυσική περιγραφή:VIII, 137 p. 79 illus., 59 illus. in color. online resource.
ISBN:9789811305443
ISSN:2196-8845
DOI:10.1007/978-981-13-0544-3