Volume Conjecture for Knots

The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-mat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Murakami, Hitoshi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yokota, Yoshiyuki (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Mathematical Physics, 30
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04228nam a2200517 4500
001 978-981-13-1150-5
003 DE-He213
005 20191025181902.0
007 cr nn 008mamaa
008 180815s2018 si | s |||| 0|eng d
020 |a 9789811311505  |9 978-981-13-1150-5 
024 7 |a 10.1007/978-981-13-1150-5  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Murakami, Hitoshi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Volume Conjecture for Knots  |h [electronic resource] /  |c by Hitoshi Murakami, Yoshiyuki Yokota. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a IX, 120 p. 98 illus., 18 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 30 
505 0 |a 1. Preliminaries (knots and links, braids, hyperbolic geometry) -- 2. R-matrix, the Kashaev invariant and the colored Jones polynomimal -- 3. Volume conjecture -- 4. Triangulation of a knot complement and hyperbolicity equation -- 5. Idea of the "proof" -- 6. Representations of a knot group into SL(2;C) and their Chern-Simons invariant -- 7. Generalization of the volume conjecture. 
520 |a The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-matrix that is associated with the N-dimensional representation of the Lie algebra sl(2;C). The volume conjecture was first stated by R. Kashaev in terms of his own invariant defined by using the quantum dilogarithm. Later H. Murakami and J. Murakami proved that Kashaev's invariant is nothing but the N-dimensional colored Jones polynomial evaluated at the Nth root of unity. Then the volume conjecture turns out to be a conjecture that relates an algebraic object, the colored Jones polynomial, with a geometric object, the volume. In this book we start with the definition of the colored Jones polynomial by using braid presentations of knots. Then we state the volume conjecture and give a very elementary proof of the conjecture for the figure-eight knot following T. Ekholm. We then give a rough idea of the "proof", that is, we show why we think the conjecture is true at least in the case of hyperbolic knots by showing how the summation formula for the colored Jones polynomial "looks like" the hyperbolicity equations of the knot complement. We also describe a generalization of the volume conjecture that corresponds to a deformation of the complete hyperbolic structure of a knot complement. This generalization would relate the colored Jones polynomial of a knot to the volume and the Chern-Simons invariant of a certain representation of the fundamental group of the knot complement to the Lie group SL(2;C). We finish by mentioning further generalizations of the volume conjecture. 
650 0 |a Mathematical physics. 
650 0 |a Topology. 
650 0 |a Hyperbolic geometry. 
650 1 4 |a Mathematical Physics.  |0 http://scigraph.springernature.com/things/product-market-codes/M35000 
650 2 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
650 2 4 |a Hyperbolic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21030 
700 1 |a Yokota, Yoshiyuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811311499 
776 0 8 |i Printed edition:  |z 9789811311512 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 30 
856 4 0 |u https://doi.org/10.1007/978-981-13-1150-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)