Volume Conjecture for Knots
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-mat...
Κύριοι συγγραφείς: | Murakami, Hitoshi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yokota, Yoshiyuki (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | SpringerBriefs in Mathematical Physics,
30 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Geometry Through History Euclidean, Hyperbolic, and Projective Geometries /
ανά: Dillon, Meighan I., κ.ά.
Έκδοση: (2018) -
Knots, Low-Dimensional Topology and Applications Knots in Hellas, International Olympic Academy, Greece, July 2016 /
Έκδοση: (2019) -
Simplicial Methods for Higher Categories Segal-type Models of Weak n-Categories /
ανά: Paoli, Simona, κ.ά.
Έκδοση: (2019) -
Factorizable Sheaves and Quantum Groups
ανά: Bezrukavnikov, Roman, κ.ά.
Έκδοση: (1998) -
Symmetry Breaking for Representations of Rank One Orthogonal Groups II
ανά: Kobayashi, Toshiyuki, κ.ά.
Έκδοση: (2018)