Volume Conjecture for Knots

The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-mat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Murakami, Hitoshi (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Yokota, Yoshiyuki (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:SpringerBriefs in Mathematical Physics, 30
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Preliminaries (knots and links, braids, hyperbolic geometry)
  • 2. R-matrix, the Kashaev invariant and the colored Jones polynomimal
  • 3. Volume conjecture
  • 4. Triangulation of a knot complement and hyperbolicity equation
  • 5. Idea of the "proof"
  • 6. Representations of a knot group into SL(2;C) and their Chern-Simons invariant
  • 7. Generalization of the volume conjecture.