Volume Conjecture for Knots
The volume conjecture states that a certain limit of the colored Jones polynomial of a knot in the three-dimensional sphere would give the volume of the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called R-mat...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Singapore :
Springer Singapore : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | SpringerBriefs in Mathematical Physics,
30 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1. Preliminaries (knots and links, braids, hyperbolic geometry)
- 2. R-matrix, the Kashaev invariant and the colored Jones polynomimal
- 3. Volume conjecture
- 4. Triangulation of a knot complement and hyperbolicity equation
- 5. Idea of the "proof"
- 6. Representations of a knot group into SL(2;C) and their Chern-Simons invariant
- 7. Generalization of the volume conjecture.