Laboratory Experiments in Information Retrieval Sample Sizes, Effect Sizes, and Statistical Power /

Covering aspects from principles and limitations of statistical significance tests to topic set size design and power analysis, this book guides readers to statistically well-designed experiments. Although classical statistical significance tests are to some extent useful in information retrieval (I...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sakai, Tetsuya (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Σειρά:The Information Retrieval Series, 40
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04222nam a2200493 4500
001 978-981-13-1199-4
003 DE-He213
005 20191220125321.0
007 cr nn 008mamaa
008 180922s2018 si | s |||| 0|eng d
020 |a 9789811311994  |9 978-981-13-1199-4 
024 7 |a 10.1007/978-981-13-1199-4  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
100 1 |a Sakai, Tetsuya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Laboratory Experiments in Information Retrieval  |h [electronic resource] :  |b Sample Sizes, Effect Sizes, and Statistical Power /  |c by Tetsuya Sakai. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a IX, 150 p. 53 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 40 
505 0 |a 1 Preliminaries -- 2 t-tests -- 3 Analysis of Variance -- 4 Multiple Comparison Procedures -- 5 The Correct Ways to Use Significance Tests -- 6 Topic Set Size Design Using Excel -- 7 Power Analysis Using R -- 8 Conclusions. 
520 |a Covering aspects from principles and limitations of statistical significance tests to topic set size design and power analysis, this book guides readers to statistically well-designed experiments. Although classical statistical significance tests are to some extent useful in information retrieval (IR) evaluation, they can harm research unless they are used appropriately with the right sample sizes and statistical power and unless the test results are reported properly. The first half of the book is mainly targeted at undergraduate students, and the second half is suitable for graduate students and researchers who regularly conduct laboratory experiments in IR, natural language processing, recommendations, and related fields. Chapters 1-5 review parametric significance tests for comparing system means, namely, t-tests and ANOVAs, and show how easily they can be conducted using Microsoft Excel or R. These chapters also discuss a few multiple comparison procedures for researchers who are interested in comparing every system pair, including a randomised version of Tukey's Honestly Significant Difference test. The chapters then deal with known limitations of classical significance testing and provide practical guidelines for reporting research results regarding comparison of means. Chapters 6 and 7 discuss statistical power. Chapter 6 introduces topic set size design to enable test collection builders to determine an appropriate number of topics to create. Readers can easily use the author's Excel tools for topic set size design based on the paired and two-sample t-tests, one-way ANOVA, and confidence intervals. Chapter 7 describes power-analysis-based methods for determining an appropriate sample size for a new experiment based on a similar experiment done in the past, detailing how to utilize the author's R tools for power analysis and how to interpret the results. Case studies from IR for both Excel-based topic set size design and R-based power analysis are also provided. 
650 0 |a Information storage and retrieval. 
650 0 |a Statistics . 
650 1 4 |a Information Storage and Retrieval.  |0 http://scigraph.springernature.com/things/product-market-codes/I18032 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/S17020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811311987 
776 0 8 |i Printed edition:  |z 9789811312007 
776 0 8 |i Printed edition:  |z 9789811345814 
830 0 |a The Information Retrieval Series,  |x 1387-5264 ;  |v 40 
856 4 0 |u https://doi.org/10.1007/978-981-13-1199-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)