Flag Varieties An Interplay of Geometry, Combinatorics, and Representation Theory /

This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lakshmibai, V. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Brown, Justin (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Texts and Readings in Mathematics, 53
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04491nam a2200505 4500
001 978-981-13-1393-6
003 DE-He213
005 20191028203025.0
007 cr nn 008mamaa
008 180626s2018 si | s |||| 0|eng d
020 |a 9789811313936  |9 978-981-13-1393-6 
024 7 |a 10.1007/978-981-13-1393-6  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Lakshmibai, V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Flag Varieties  |h [electronic resource] :  |b An Interplay of Geometry, Combinatorics, and Representation Theory /  |c by V Lakshmibai, Justin Brown. 
250 |a 2nd ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XIV, 312 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 53 
505 0 |a Chapter 1. Preliminaries -- Chapter 2. Structure Theory of Semisimple Rings -- Chapter 3. Representation Theory of Finite Groups -- Chapter 4. Representation Theory of the Symmetric Group -- Chapter 5. Symmetric Polynomials -- Chapter 6. Schur-Weyl Duality and the Relationship Between Representations of Sd and GLn (C) -- Chapter 7. Structure Theory of Complex Semisimple Lie Algebras -- Chapter 8. Representation Theory of Complex Semisimple Lie Algebras -- Chapter 9. Generalities on Algebraic Groups -- Chapter 10. Structure Theory of Reductive Groups -- Chapter 11. Representation Theory of Semisimple Algebraic Groups -- Chapter 12. Geometry of the Grassmannian, Flag and their Schubert Varieties via Standard Monomial Theory -- Chapter 13. Singular Locus of a Schubert Variety in the Flag Variety SLn=B -- Chapter 14. Applications -- Chapter 15. Free Resolutions of Some Schubert Singularities -- Chapter 16. Levi Subgroup Actions on Schubert Varieties, and Some Geometric Consequences. 
520 |a This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications-singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences. 
650 0 |a Group theory. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Algebraic geometry. 
650 1 4 |a Group Theory and Generalizations.  |0 http://scigraph.springernature.com/things/product-market-codes/M11078 
650 2 4 |a Associative Rings and Algebras.  |0 http://scigraph.springernature.com/things/product-market-codes/M11027 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
700 1 |a Brown, Justin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811313943 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 53 
856 4 0 |u https://doi.org/10.1007/978-981-13-1393-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)